On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium

نویسنده

  • XUGUANG LU
چکیده

The paper considers the convergence to equilibrium for measure solutions of the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. We prove the exponential sharp rate of strong convergence to equilibrium for conservative measure solutions having finite mass and energy. The proof is based on the regularizing property of the iterated collision operators, exponential moment production estimates, and some previous results on the exponential rate of strong convergence to equilibrium for square integrable initial data. We also obtain a lower bound of the convergence rate and deduce that no eternal solutions exist apart from the trivial stationary solutions given by the Maxwellian equilibrium. We finally use these convergence rates in order to deduce global-in-time strong stability of measure solutions. Mathematics Subject Classification (2000): 35Q Equations of mathematical physics and other areas of application [See also 35J05, 35J10, 35K05, 35L05], 76P05 Rarefied gas flows, Boltzmann equation [See also 82B40, 82C40, 82D05].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature

We consider an approximation of the linearised equation of the homogeneous Boltzmann equation that describes the distribution of quasiparticles in a dilute gas of bosons at low temperature. The corresponding collision frequency is neither bounded from below nor from above. We prove the existence and uniqueness of solutions satisfying the conservation of energy. We show that these solutions conv...

متن کامل

Convergence to equilibrium for linear spatially homogeneous Boltzmann equation with hard and soft potentials: a semigroup approach in L1-spaces

We investigate the large time behavior of solutions to the spatially homogeneous linear Boltzmann equation from a semigroup viewpoint. Our analysis is performed in some (weighted) L-spaces. We deal with both the cases of hard and soft potentials (with angular cut-off). For hard potentials, we provide a new proof of the fact that, in weighted L-spaces with exponential or algebraic weights, the s...

متن کامل

Optimal Time Decay of the Vlasov-Poisson-Boltzmann System in R

The Vlasov-Poisson-Boltzmann System governs the time evolution of the distribution function for the dilute charged particles in the presence of a self-consistent electric potential force through the Poisson equation. In this paper, we are concerned with the rate of convergence of solutions to equilibrium for this system over R. It is shown that the electric field which is indeed responsible for...

متن کامل

Fast and Slow Convergence to Equilibrium for Maxwellian Molecules via Wild Sums

We consider the spatially homogeneous Boltzmann equation for Maxwellian molecules and general finite energy initial data: positive Borel measures with finite moments up to order 2. We show that the coefficients in the Wild sum converge strongly to the equilibrium, and quantitatively estimate the rate. We show that this depends on the initial data F essentially only through on the behavior near ...

متن کامل

On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

This paper concerns Lconvergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (−4 ≤ γ < 0), with and without angular cutoff. We prove the time-averaged L-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2 + |γ|. For the usual L-convergence we prove that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013